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Abstract

On the base of modern probability density functions approach turbulent coagulation of particles in gravitational field is investigated.
Spectral presentation of second velocity moments of gas phase is used for calculation of intensity of particles relative chaotic motion.
Closed diffusion equation for two-particle distribution in space is obtained. Boundary condition taking into account coefficients of
new particle formation and momentum restitution during two particles collision is found. Formula for calculation of turbulent coagu-
lation kernel of particles in gravity field is gain. Influence of cloud turbulence and turbulence in a pipe flow on intensity of droplets coag-
ulation is studied. Strong effects of relative turbulent diffusion between droplets, droplets inertia and droplets gravitational settling on
intensity of coagulation are found out. Connection between internal structure of turbulence type and coagulation rate is illustrated.
Obtained results are right for polydisperse additions in turbulent flows.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Particles or droplets coagulation in turbulent flows is
realized in many industrial technologies and atmospheric
phenomenon. Today solution of series of environmental
problems demands the investigation of coagulation process
of droplets in atmospheric clouds. Mechanisms which con-
trol process of droplets coagulation in turbulent atmo-
sphere are very complex. Experimental researches of this
process are rather inconvenient and modern methods of
studying are based on theoretical investigations. Now are
most popular theoretical tools are based on direct numeri-
cal simulation (DNS) of turbulent flow with addition a
small amount of dispersed phase. Now in the absence of
enough trustworthy experimental data about droplets
coagulation in atmosphere DNS method can be considered
as an image of real experiment.

As a result of analysis of DNS data was revealed that
droplets are not uniformly distributed in the turbulent
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flow. In statistically stationary and homogeneous turbu-
lence are formed fractal structures with preferential con-
centration of droplets. The results of DNS data about
particles collisions and origin of area of increased concen-
tration of particles are collected for example in [1–9]. It was
established that effect of preferential concentration is
observed for particles dynamic relaxation times are about
turbulent Kolmogorov time micro scale. For more inertial
particles with relaxation times of order integral time scale
of turbulence effect of particles clustering in localized areas
of the flow disappears. In [1–9] the collision rate of particles
is calculated on the base of averaged relative velocity at the
moment of time in which two particles contact with each
other. In [7] DNS method is applied to investigation of col-
lision of hydrodynamically interacting particles.

Theoretical methods based on DNS use Lagrange
description of a dispersed phase. Lagrange description
demands numerical simulation of many thousands particles
trajectories with subsequent their averaging. A reliable
DNS of turbulent two phase flow is developed for statisti-
cally stationary and homogeneous turbulent flow without
mass forces working on colliding particles. Including
additional factors, for example, gravitational settling of
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Nomenclature

aa radius of ath particle
B(x,y) beta function
CK Kolmogorov constant
Da,ik coefficient of turbulent diffusion of ath particles
Dab,ik coefficient of turbulent relative diffusion be-

tween two particles
D0 coefficient of turbulent diffusion of inertia less

particles
da diameters of ath particle
Eij correlation of carrier phase velocity fluctuation
fa, fajb unconditional and conditional response func-

tions
G probability density functions of particles dis-

placement
Jab flux of bth particles on the surface of ath particle
Kab coagulation kernel
k wave vector in the spectral presentation of

velocity correlations
LE Euler integral space scale
Nab distribution function of particles of two types in

space
Rek Reynolds number calculated on Taylor micro

scale
TE Euler integral temporary scale
u velocity fluctuations of fluid phase
VðpÞa actual velocity of the ath particle

v
ðpÞ
a velocity fluctuations of ath particle

va Euler velocity fluctuations of ath particles
XðpÞa Lagrange position of ath particle
xa Euler position of ath particle
Yab,yab relative distances between two particles

hWai averaged velocity of ath particle due to mass
force

hWabi averaged relative velocity between two particles
wab turbulent relative velocity between two particles

Greek symbols

ca non-dimensional relative velocity of ath particle
D dispersion of particles due to turbulence
d(x) three-dimensional Dirac delta-function
e turbulent dissipation rate
gK Kolmogorov space micro scale
k Taylor micro scale
l coefficient of momentum restitution after parti-

cles collisions
m kinematic viscosity of a gas
qab coefficient of two particles velocity correlation
r average square of particles turbulent velocity
sa dynamic relaxation time of ath particle
sK Kolmogorov temporary micro scale
U probability density function of particles velocity

fluctuations
v probability of formation new particle as a result

of particles collision
Xa parameter of inertia of ath particle
xk mean frequency of velocity fluctuations in

eddies with wave vector k

Subscripts

a,b particles ath and bth types
h i denotes result of averaging over an ensemble of

turbulent realizations
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particles, polydisperse of particles leads to essential compli-
cation of calculation algorithm and crucial increasing time
of numerical simulation. Under these circumstances a num-
ber of effects remain unexplored. Main effects include, for
example, influence of particles sedimentation velocities on
tendency of preferential concentration and coagulation
rate, influence of relative turbulent diffusion on particles
coagulation, dependence of averaged turbulent relative
velocity of particles from their gravitational settling and
distance between particles. Therefore results of numerical
investigation of coagulation process in a cloud conditions,
for example, [10] is questionable. Also rather complex for
DNS is investigation of polydisperse composition of parti-
cles on their coagulation.

Another way of studying of characteristics of particles in
turbulence is based on Euler description. In this approach
dispersed phase are treated as continuous media. At com-
parison of expenses of time request for numerical simula-
tion and complexities of calculation algorithm in DNS
the method based on Euler description appears much more
economic than DNS. As a result of Euler description we
obtain the system of balance equations for first and second
moments of dispersed phase fluctuations. Advantages of
this approach consist from not only sufficient reduction
of computational time, but also in opportunity of inclusion
of various complicating factors at studying turbulent flow
with colliding particles. Really in Euler description always
remain questions about legitimacy of assumption used for
closing the system of equations. Nevertheless modeling of
turbulent motion of particles as continuous phase is very
attractive. Reasonable combination of Lagrange and Euler
approaches for description turbulent motion of particles
should lead to understanding the basically lows in complex
conditions realized in modern technologies and atmo-
spheric phenomenon.

Essential way to transit from Lagrange description to
Euler is based on probability density function (PDF) for
various parameters of particles, for example, coordinates,
velocities, temperatures and others (see, for reference,
[11–13]). Closed equation for PDF gives system of balance
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equations for moments of dispersed phase parameters. For
example, PDF of two particles distribution in space is
describes by diffusion equation. According to type of the
equation it is required to build up boundary conditions.
Necessary boundary conditions are found at the present
work. First condition describes particles which are sepa-
rated from each other on the sufficiently large distance.
Second boundary condition is on the colliding sphere at
the moment of particles collision. In the second boundary
condition we take into account probability of new particle
formation and momentum loss during particles collisions
with each other. In the sense of the diffusion equation the
rate of particles coagulation is represent as flux of colliding
particles on the surface of a set particle considered as a
target.

Results of the present work used the main ideas and
approaches of our previous article [13]. The main goal of
this paper is investigation of influence of relative turbulent
diffusion between particles, sedimentation velocities of par-
ticles and particles inertia on the rate of coagulation.
Brownian motion of particles investigated in our work is
negligible small in comparison of intensity of particles
turbulence, so main origin of particles chaotic motion is
turbulence of carried phase.

The calculation results are compared with available
DNS data. Qualitative features in chaotic behavior of par-
ticles in various types of turbulence in an atmospheric
cloud and in a pipe flows are illustrated. On the base of
spectral presentation of correlation of carrier phase veloc-
ity fluctuations results of [13] are improved. In this paper,
we do not study effect of preferential concentration of par-
ticles. Results of present paper are accurate for particles
with relaxation times surpassing the Kolmogorov tempo-
rary micro scale.
2. Particle response functions

If we consider two points in stationary and isotropic tur-
bulence, we find out, that temporary and space integral
scales along line between these points and perpendicular
to the line are different (see, for example, [14]). Essential
way to include such information in calculations of particles
response functions [13] is based on use spectral presenta-
tion of second moments of carrier phase velocity fluctua-
tions. Also it is important that spectral approach enables
take into account in the calculations detailed information
about microstructure of turbulence.

2.1. Unconditional response function

Intensity of particles turbulent motion in equilibrium
approach depends on response function [13]

hva;iva;ji ¼ fahuiuji;

huiujifa ¼
1

sa

Z t

0

e�
t�n
sa uiðx; tÞuj XðpÞa ðnÞ; n

� �� �
dn; ð1Þ
where sa is ath particle dynamic relaxation time; XðpÞa ðnÞ is
random particle trajectory, which in the moment of time t

is passes through point x, XðpÞa ðtÞ ¼ x; hvaivaji is second mo-
ment of ath particles velocity fluctuations. Averaging in (1)
is carried over the ensembles of turbulent realizations of
gas and particles velocity fluctuations. In the sense of Corr-
sin [15] ‘‘independent hypothesis” we rewrite (1) in the
spectral form (see Appendix A)

huiujifa ¼
1

sa

Z 1

0

e�
s
sa ds

�
Z bEijðk; sÞ exp ik � XðpÞa ðtÞ �XðpÞa ðt� sÞ

� �� �� �
dk;

ð2Þ
where s = t � n; in the exponential term in (2) i2 = �1, i is
complex unit; point in exponential term denotes scalar
product of two vectors; bEijðk; sÞ is spectral presentation
of two-point two-time correlation of carrier phase velocity
fluctuations (see Appendix A).

The response function for particles turbulent energy
follows from (2) and has simpler form:

3

2
v2

a

� �
¼ 1

2
fahuiuii ¼ faE; ð3Þ

where is meant summation on twice repeated index.
The term in the angular brackets in the right-hand side

of expression (2) has the form

exp ik � XðpÞa ðtÞ � XðpÞa ðt � sÞ
� �� �� �

¼ exp ik � YðpÞa ðsÞ
� �� �

;

where YðpÞa ðsÞ ¼ XðpÞa ðtÞ � XðpÞa ðt � sÞ ¼
R s

0
VðpÞa ðnÞdn is ran-

dom displacement of a particle during interval of time s;
VðpÞa ðnÞ is a particle instantaneous velocity.

In the coordinate frame moving with average velocity of
carrier phase we separate relative average velocity of parti-
cle hWai and velocity fluctuation vðpÞa

VðpÞa ðnÞ ¼ hWai þ vðpÞa ðnÞ; vðpÞa ðnÞ
� �

¼ 0:

With the account of above formulas we obtain

exp ik �YðpÞa ðsÞ
� �� �

¼ expðik � hWaisÞ exp ik �
Z s

0

vðpÞa ðnÞdn

� 	
 �
¼ exp ik � hWaisð Þ exp ik �yðpÞa ðsÞ

� �� �
; ð4Þ

where yðpÞa ðsÞ ¼
R s

0
vðpÞa ðnÞdn is random particle displace-

ment during interval of time s.
The two multipliers in the last term of (4) describe effects

due to average velocity slips and due to chaotic motion of
particle. Averaged value of multiplier which connected
with particle chaotic motion is calculated with the help of
PDF of particles displacement G(ya,s)

exp ik � yðpÞa ðsÞ
� �� �

¼
Z

Gðya; sÞ expðik � yaÞdya: ð5Þ

We consider particle velocity fluctuations as a statistically
stationary Gaussian random process. For particles with
dynamic relaxation times of order integral time scale of
turbulence DNS data (see, for example, [2]) confirm this
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assumption. Being based on the results of the previous
paper [13] expression for PDF G(ya,s) of particle random
displacement it is written as

Gðya; sÞ ¼
1

2pD2
aðsÞ

� �3=2
exp � ya � ya

2D2
aðsÞ

 !
: ð6Þ

Here D2
aðsÞ is averaged square of module of particle chaotic

displacement due to its inertia

D2
aðsÞ ¼ N2s2

a v2
a

� �
1� exp � s

sa

� 
� 	2

; ð7Þ

where multiplier N is defined in Appendix B (formula
(B.3)).

In (7) v2
a

� �
is averaged square of particle velocity

fluctuations

v2
a

� �
¼ fau2;

3

2
u2 ¼ E;

were u is mean turbulent velocity of carrier phase. From
formulas (5) and (6) we obtain (see Appendix B, formula
(B.6)) closed expression for averaged value in (5)

exp ik � yðpÞa ðsÞ
� �� �

¼ exp � k2D2
aðsÞ

2

� 	
: ð8Þ

Final expression for response function of particle (1) in
spectral form follows from (2), (4), (5) and (8)

huiujifa¼
1

sa

Z
dk

Z 1

0

e�
s
sa bEijðk;sÞexp ik � Wah is� k2D2

a

2

� 	
ds:

ð9Þ

Here the value of averaged square of particles random dis-
placement (7) we estimate for s = TE

D2
a ¼ D2

aðT EÞ:

As one can see from (7), for low inertial particle sa ? 0
there no inertial flight of particle D2

a ! 0. For particle with
sufficient inertia sa� TE the length of averaged particle
transfer also aspires to zero as D2

a ! u2T 2
EðT E=saÞ.

The response function for turbulent energy of particles
(3) has form simpler than (9)

fa ¼
1

E

Z 1

0

bE0ðkÞexp � k2D2
a

2

� 
 arctg ksahW ai
1þxksa

� �
ksahW ai

dk; ð10Þ

where hWai is module of average relative velocity of ath
particle.

From (10) one can see that response function reduced
with increasing particles relaxation time and average rela-
tive velocity. Dependence of the response function on aver-
age velocity is result of the so-called ‘‘crossing trajectory
effect” [16].
2.2. Conditional response function

Conditional response function has the form [13]

fbjaðyabÞhuiuji ¼
1

sb

Z t

0

e
�t�n

sb uiðxa; tÞuj X
ðpÞ
b ðnÞ; n

� �D E
dn;

ð11Þ
where yab = xa � xb is relative distance between particles at
the moment of time t.

Eq. (11) describes the results of averaging over ensem-
bles of turbulent realization of velocity fluctuations of car-
rier phase and random trajectories of particles a and b in
condition, that at the moment of time t distance between
particles will be yab. In spectral presentation of carrier
phase velocity fluctuations the expression (11) turns to

fbjaðyabÞhuiuji

¼ 1

sb

Z
dk

Z 1

0

e
� s

sb bEijðk;sÞ exp ik � XðpÞa ðtÞ�X
ðpÞ
b ðnÞ

� �h iD E
ds;

ð12Þ

where s = t � n.
The difference in random trajectories of two particles in

(12) can be submitted in the equivalent form

XðpÞa ðtÞ � X
ðpÞ
b ðnÞ ¼ XðpÞa ðtÞ � XðpÞa ðnÞ

� �
þ XðpÞa ðnÞ � X

ðpÞ
b ðnÞ

h i
¼ YðpÞa ðsÞ þ Y

ðpÞ
ab ðnÞ;

Y
ðpÞ
ab ðnÞ ¼ XðpÞa ðnÞ � X

ðpÞ
b ðnÞ; ð13Þ

where Y
ðpÞ
ab ðnÞ is random relative displacement of two parti-

cles during interval of time n.
Instantaneous relative distance between two particles at

an arbitrary moment of time t0
6 n 6 t is

Y
ðpÞ
ab ðnÞ ¼ hWabi n� t0

� �
þ z

ðpÞ
ab ðnÞ þ Y0

ab; ð14Þ

where hWabi = hWai � hWbi is difference between averaged
velocities of particles; t0 is initial moment of time; Y0

ab is rel-
ative distance between particles at the initial moment of
time t0; z

ðpÞ
ab ðnÞ is random component of relative distance,

z
ðpÞ
ab ðnÞ

D E
¼ 0.

Relative distance between particles at the moment of
time t is exact yab

Y
ðpÞ
ab ðtÞ ¼ yab ¼ Wab

� �
ðt � t0Þ þ Y0

ab: ð15Þ

From Eqs. (14) and (15) follows equation for relative dis-
tance between two particles for any moment of time
t0
6 n 6 t

Y
ðpÞ
ab ðnÞ ¼ yab � hWabiðt � nÞ þ z

ðpÞ
ab ðnÞ: ð16Þ

After substitution expressions (4), (13) and (16) into
expression (12) we find following formula for conditional
response function
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fbjaðyabÞhuiuji ¼
1

sb

Z
dk

Z 1

0

e
� s

sb bEijðk; sÞ exp½ik � hWais�

� exp ik � yðpÞa ðsÞ
� �� �

exp½ik � ðyab � Wab

� �
sÞ�

� exp ik � zðpÞab ðnÞ
h iD E

ds: ð17Þ

At writing (17) we have split correlation between random
motion of ath particle and relative motion between two
particles.

We suppose that relative velocity between two particles
is Gaussian random process. Under this supposition aver-
aged value of the last multiplier in the right-hand side of
(17) is calculated as

exp ik � zðpÞab ðnÞ
h iD E

¼
Z

Gðzab; nÞ exp ik � zab

� �
dzab: ð18Þ

Here G(zab,n) presents PDF of random distance between
two particles at the moment of time n. On the basis of
results [13] one can write down

Gðzab; nÞ ¼
1

2pD2
abðnÞ

� �3=2
exp � zab � zab

2D2
abðnÞ

 !
: ð19Þ

After substitution (19) into (18) with the help of Appendix
B we obtain

exp ik � zðpÞab ðnÞ
h iD E

¼ exp �
k2D2

abðnÞ
2

" #
: ð20Þ

Nonzero value of sub integral function in (17) is located in
the interval of time t � TE 6 n 6 t. In that case for
moments of time (n � t0)� TE, sa, sb averaged square of
random relative distance between two particles is approxi-
mated as (see [13])

D2
ab ¼ N2 s2

a v2
a

� �
þ s2

b v2
b

D E
� 2qabsasb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

a

� �
v2

b

D Er� 

;

where qab is correlation coefficient between random veloc-
ities of two particles.

Value of inertial displacement of particles D2
ab grows

with increasing particles relaxation times. For inertial
particles sa, sb� TE square of relative distance between
particles tends to D2

ab � N2ðu2T EÞðsa þ sbÞ. Correlation
coefficient qab is connected with unconditional and condi-
tional response functions (see [13])

qab ¼
Xbfbja þ Xafajb

ðfafbÞðXa þ XbÞ
; ð21Þ

where Xa = sa/TE is parameter of particles inertia.
From expressions (8), (17) and (20) follows closed

formula for conditional response function in spectral pre-
sentation

fbjaðyabÞhuiuji ¼
1

sb

Z
dk

Z 1

0

e
� s

sb bEijðk; sÞexp½ik � ðhWbisþ yabÞ�

� exp �k2

2
D2

a þD2
ab

� �� 	
ds: ð22Þ
Simpler expression for conditional response function fol-
lows from (22) for yab = 0 after summation over i = j

fba ¼
1

E

Z 1

0

bE0ðkÞ exp � k2

2
D2

a þ D2
ab

� �� 	 arctg
ksbhW bi
1þxksb

� �
ksbhW bi

dk:

ð23Þ

From (23) it is possible to notice, that conditional response
function decrease with increasing average relative velocity
and relaxation times of particles ath or bth types.

Square of relative chaotic velocity between particles for
isotropic turbulent flow has the form

w2
ab

D E
¼ hðva � vbÞ2i

¼ v2
a

� �
þ v2

b

D E
� 2qab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

a

� �
v2

b

D Er
: ð24Þ

Averaged module of relative velocity between particles is
calculated in accordance of Appendix B

hjwabji ¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

ab

D Er
: ð25Þ
3. Turbulent diffusion coefficients of particles

Turbulent relative diffusion coefficient of two particles
has been definite in [13]

Dab;ijðyabÞ¼
Z t

0

uiðxa; tÞ uj XðpÞa ðnÞ;n
� �

�uj X
ðpÞ
b ðnÞ;n

� �h iD En
þ uiðxb; tÞ uj X

ðpÞ
b ðnÞ;n

� �
�uj XðpÞa ðnÞ;n

� �h iD Eo
dn:

ð26Þ

From (26) it is follows that relative turbulent diffusion of
particles is function of distance between particles. The coef-
ficient of relative turbulent diffusion can be submitted as a
combination of coefficients of turbulent diffusions of parti-
cles ath and bth types and additional term, which depends
on particles correlation

Dab;ijðyabÞ ¼ Da;ij þ Db;ij � Bab;ijðyabÞ; ð27Þ

where Da,ij, Db,ij are usual coefficients of turbulent diffusion
of particles; Bab�ij is additional term caused by correlation
motion of various particles.

Coefficient of turbulent diffusion ath particles has the
form

Da;ij ¼
Z t

0

uiðxa; tÞuj XðpÞa ðnÞ; n
� �� �

dn:

In spectral presentation of fluid velocity correlation the
above expression becomes as (see, for example (9))

Da;ij ¼
Z

dk

Z t

0

bEijðk; sÞ exp ik � Wah is� k2D2
aðsÞ

2

� 	
ds:

ð28Þ



Fig. 1. The sketch of particles collisions, when ath particle considered as a
target.
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By analogy of (22) we find the presentation of additional
term in expression (27)

Bab;ijðyabÞ ¼
Z

dk expðik � yabÞ
Z t

0

bEijðk; sÞ exp �
k2D2

ab

2

 !

� exp ik � hWbis�
k2D2

a

2

� 

þ exp ik � hWais�

k2D2
b

2

 !" #
ds:

ð29Þ
From expressions (28) and (29) one can conclude that
increasing of average relative velocities of particles reduced
coefficients of turbulent diffusions. Additional term con-
nected with particles correlation motion also diminishes
with grows of relative distance between particles yab.

For simplicity of the further calculation we will examine
the mean values of turbulent diffusions

Da ¼
1

3
Da;ii; DabðyabÞ ¼

1

3
Dab;iiðyabÞ:

In spectral presentation of turbulent energy the expression
for mean coefficient of turbulent diffusion can be calculated
by analogy of (10)

Da ¼
2

3

Z 1

0

bE0ðkÞ
xk

exp � k2D2
a

2

� 

arctgðkhW ai=xkÞ

khW ai=xk
dk:

ð30Þ
From (30) follows that grows of average relative velocity of
particles reduced coefficient of turbulent diffusion (‘‘cross-
ing trajectories effect” [16]).

For inertia loss particles without average relative veloc-
ity expression (30) turns out to formula for turbulent diffu-
sion of passive substance

D0 ¼ 2

3

Z 1

0

bE0ðkÞ
xk

dk:

Expression for coefficient of relative turbulent diffusion of
particles we write down for yab = 0 in (29)

Dab ¼ Da þDb �Bab;

Bab ¼
2

3

Z 1

0

bE0ðkÞ
xk

exp �
k2D2

ab

2

 !
exp �

k2D2
b

2

 !
arctgðkhW ai=xkÞ

khW ai=xk

"

þ exp �k2D2
a

2

� 

arctgðkhW bi=xkÞ

khW bi=xk

#
dk:

For inertial particles sa, sb� TE or for sufficient average
relative velocities of particles khWbi/xk� 1 the additional
term Bab aspires to zero and coefficient of relative turbulent
diffusion becomes a sum of usual coefficients of turbulent
diffusion of particles.

4. Coagulation kernel

4.1. Analysis of equation for distribution of two particles

in space

Particles distribution at two points in space is described
by function [13]

hN abðxa; xb; tÞi ¼ d xa � XðpÞa ðtÞ
� �

d xb � X
ðpÞ
b ðtÞ

� �D E
: ð31Þ
In (31) it is possible to allocate mean xab and relative yab

variables

hN abðxab; yab; tÞi ¼ d xab � XðpÞa ðtÞ þ X
ðpÞ
b ðtÞ

h i.
2

n oD
� d yab � XðpÞa ðtÞ � X

ðpÞ
b ðtÞ

h in oE
;

where xab = (xa + xb)/2, yab = xa � xb are mean and rela-
tive variables accordingly.

Scale of change the two particles distribution on mean
variable xab sufficiently exceeds scale of change along the
relative variable yab. In the previous paper [13] on the base
of PDF approach was obtained equation for two particles
distribution in relative variable. We consider this equation
without variation of second moment of two particles veloc-
ities fluctuations

ohN abi
ot

þ o

oyab;i

W ab;i

� �
N ab

� �
� Dab;ij

ohN abi
oyab;j

 !
¼ 0: ð32Þ

Eq. (32) determines vector of averaged relative velocity of
dispersed phase hfWabi
o N ab

� �
ot

þ o

oyab;i

eW ab;i

D E
N ab

� �� �
¼ 0;

eW ab;i

D E
¼ W ab;i

� �
� Dab;il

o ln N ab

� �
oyab;j

: ð33Þ

We examine flux Jab of bth type particles on surface of
ath type particle, which is considered as a target (see Fig. 1)

Jab N 0
ab

D E
¼ fWab

D E
hN abi

� ����
Sab

; ð34Þ
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where hN 0
abi is distribution of particles, when coordinate

xb is positioned sufficiently far from point xa; index Sab in
the right-hand side of (34) denotes that function is calcu-
lated on the effective colliding sphere with radius aab (see
Fig. 1).

Collision of particles with each other can lead to forma-
tion of new particle, or to disintegration of particles. Also
after collision particles may loss momentum of their rela-
tive motion. These processes control distribution of dis-
persed impurity concentration in space. The description
of various behaviors of particles after collision is incorpo-
rated in boundary condition at the colliding sphere.
4.2. Boundary condition for colliding particles

Boundary condition for distribution of two particles in
space we obtain in the frame of statistical approach [11].
Actual relative velocity in dispersed phase consist from
averaged (3) and fluctuating parts

fWab ¼ fWab

D E
þ wab; hwabi ¼ 0:

Relative velocity may be presented as a sum of velocities
in radial fWn and tangential fWt directions by following
formulas

fWn ¼ n n �fWab

� �
; fWt ¼ fWab � n n �fWab

� �
; n ¼ r=r:

Method using in treatment boundary condition at the col-
liding sphere is similar to the method used in the kinetic
theory of gaseous [17].

Collided particles can form new particle with probability
1 � v, or remain separate particles with probability v. We
investigate only coagulation of droplets. As a rule droplets
breakup is results of two reasons. First reason connected
with sufficiently large difference in velocities between collid-
ing droplets. Second reason is significant viscous stresses
on the droplets surface due to relative velocities between
droplets and surrounding fluid. These both reasons are
realized, for example, in nonequilibrium turbulent flows
such as turbulent jets, initial stage of pipe flow, or turbulent
flow in various mixers. In clouds turbulence or in turbu-
lence at stabilized flow in a pipe relative velocities between
droplets is not so significant to lead to droplets breakup.

During inelastic collision particles lose the momen-
tum of their relative motion. The radial relative velocity
of reflected particles changes sign. Direction of tangen-
tial relative velocity of reflected particles does not
vary. With these assumptions PDF of reflected particles
UþðW00

abÞ is connected with PDF of colliding particles
U�ðW0

abÞ as

W 00
nUþ W 00

n ;W
00
t

� �
¼�v

Z 0

�1
dW 0

n

Z
W 0

nU� W 0
n;W

0
t

� �
d W 0

nlnþW 00
r

� �
d W0

tlt �W00
t

� �
dW0

t;

ð35Þ
where one and two primes denote the velocities of particles
before and after collision; ln, lt are coefficients of momen-
tum restitution in radial and tangential directions.

After integration (35) we obtain following presentation
for PDF of reflected particles

Uþ W 00
n;W

00
t

� �
¼ v

l2
nlt

U� �
W 00

n

ln
;
W00

t

lt

� 

: ð36Þ

In homogeneous approximation the PDF of particles
before collision is

U� W 0
n;W

0
t

� �
¼ hN abi

2p w2
ab

D E� �3=2

� exp �
W 0

n � eW n

D E� �2

2 w2
ab

D E
264

375 exp �
W0

t � fWt

D E��� ���2
2 w2

ab

D E
264

375;
ð37Þ

where w2
ab

D E
is averaged square of turbulent relative veloc-

ity between two particles (24).
From expressions (36) and (37) we obtain closed form

for PDF of reflected particles
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00
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� �
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v N ab
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D E
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D E��� ���2
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t w2
ab

D E
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ð38Þ

Input flux of bth particles colliding with target particle is
calculated on the base of PDF of particles before collision
(37)

eW n�

D E
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D Er
0BB@
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D Er
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ð39Þ

Output flux of bth particles reflected after collision from
the target ath particle is calculated on the base of PDF
(39)

eW nþ

D E
hN abi ¼

Z
dW00

t

Z 1

0

W 00
nUþ W 00

n;W
00
t

� �
dW 00

n

¼ �v eW n�

D E
hN abi: ð40Þ

Boundary condition follows from equality of the sum of
input (before collision) and output (after collision) fluxes
to the flux with averaged relative velocity (33)

eW n

D E
hN abi ¼ eW nþ

D E
hN abi þ eW n�

D E
hN abi: ð41Þ
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From Eqs. (39)–(41) follows boundary condition

eW n

D E
1� 1� v

1þ v
erf

eW n

D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 w2

ab

D Er
0BB@
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2664
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¼ 1� v
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
w2

ab

D Er
exp �

eW n

D E2

2 w2
ab

D E
0B@

1CA: ð42Þ

Eq. (42) gives value of averaged relative velocity of dis-
persed phase as a function of average turbulent relative
velocity between particles and probability of two particles
association v. It is necessary to note, that expressions (33)
and (42) explicitly link gradient of particles concentration
and averaged relative velocity of particles due to mass force.

For v = 0 (two particles after collision form new parti-
cle) the flux of bth particle on the target ath particle
achieves maximal value. If v = 1 the particles after collision
remain separate and flux on the target particle is zero
h eW ni ¼ 0.

If average relative velocity in radial direction is less than
average fluctuation velocity in radial direction h eW ni <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hw2
abi=p

q
Eq. (42) turns out to simple boundary condition

eW n

D E
¼ 1� v

1þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
w2

ab

D Er
: ð43Þ

Dimensionless velocity W 0
n

� �
¼ h eW ni

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hw2

abi=p
q

ob-

tained as a solution of Eq. (42) and calculated on formula
(43) is illustrated in Fig. 2. One can see that appreciable dif-
ference in dimensionless velocity hW 0

ni received by two
ways of calculations is observed for v < 0.2.

4.3. Coagulation kernel

Concentration of particles varies as a result of large
number of particles collisions. Time scale of variation of
Fig. 2. Dimensionless averaged relative velocity as a function of proba-
bility of new particle formation: (1) solution of Eq. (42); (2) calculation on
formula (43).
averaged particles concentration is essentially grater than
time scale between collisions of two particles. Taking this
reasoning into consideration we calculate particles flux
Jab in the quasi steady approximation. During our exami-
nation we assume that coefficient of relative diffusion of
particles in Eq. (33) has constant value Dab, which is esti-
mated at yab = 0. Also we neglect heterogeneity of bth par-
ticles concentration along angular coordinate h (see Fig. 1).
Result of our calculation can be treated only as estimation
of real efficiency of coagulation of particles it turbulent
flow. For quasi steady approximation in spherical coordi-
nate system equation for hNabi have the following form

� 1

4
hW abi

ohN abi
or

¼ 1

r2

o

or
r2Dab

ohN abi
or

� 

; ð44Þ

where r is radial component of the relative vector yab in
coordinate system fixed at the centre of ath particle.

In Eq. (44) condition of particles collision is hWabi > 0.
One multiplier 1/2 in the left-hand side of (44) appears as
result of averaging the radial component of relative veloc-
ity hWabi along angular h coordinate (0 6 h 6 p/2, see
Fig. 1). Another multiplier 1/2 in the left-hand side of
(44) is ratio the area of upper half of the colliding sphere
to the entirely area of the sphere.

First boundary conditions for Eq. (44) describe the
asymptotic behavior of concentration

hN abi ! hN 0
abi for r!1: ð45Þ

Second boundary condition describes gradient of particles
distribution on the surface of colliding sphere with radius
aab (see Fig. 1). We used this boundary condition in linear
form (43)

hW abi
4
hN abi þ Dab

dhN abi
dr

¼ 1� v
1þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
w2

ab

D Er
hN abi

for r ¼ aab: ð46Þ

From solution Eq. (44) with boundary conditions (45) and
(46) we find expression for flux (34) of bth particles on the
surface of ath particle

J ab ¼
1� v
1þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
w2

ab

D Er !
1þHabeHab E2ðHabÞ

1�v
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p w2
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D Er
W ab

� �
=2

� 1

0BB@
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2664
3775
�1

;

Hab ¼
aab W ab

� �
=4

Dab
: ð47Þ

The details of calculation of (47) are described in Appendix
C. For v = 1 there no grows of ath particle as a result of
collisions Jab = 0. If each collision between particles form
new particle (v = 0) value of particles flux reaches a maxi-
mum value.

We shall consider the limiting cases for expression (47).
Without mass forces driving particles hWabi = 0 we have
Hab = 0 and flux of bth particles is equal

J ab ¼
1� v
1þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
w2

ab

D Er
:



Fig. 3. Dimensionless particles flux as a function of dimensionless average
relative velocity between particles.
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Last result is similar to the expression for colliding velocity
used in [2,12]. If average relative velocity is essentially

grater than turbulent component hW abi �
ffiffiffiffiffiffiffiffiffiffiffi
hw2

abi
q

, than
HabeHabE2ðHabÞ ! 1 [18], and we obtain

J ab ! W ab

� �
=4:

It is worth to note, that turbulent component of relative

velocity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hw2

abi=p
q

is equal to the average radial velocity

for Gaussian distribution (see Appendix B).

Coagulation kernel is sum of particles flux over surface
of colliding sphere with radius aab

Kab ¼ 4pðaa þ abÞ2J ab:

Fig. 6 illustrates the influence of coefficient of relative
turbulent diffusion between particles on the flux Jab.
On the Fig. 3 dimensionless variables are J 0

ab ¼ J ab=u,

cab = hWabi/(4u), w0
ab ¼ ð1� vÞ=ð1þ vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hw2

abi=ðpu2Þ
q

,

a0
ab ¼ aab=LE, D0

ab ¼ Dab=ðuLEÞðLE is integral space macro
scale). One can see that for small level of turbulence parti-
cles flux is governed by average relative velocity between
particles cab. Fig. 3 we also illustrate, that for small value
of average relative velocity cab < 1 the flux is control by tur-
bulent relative velocity w0

ab.
In the gravity field average relative velocity is noticeable

for particles with distinct radiuses. Chaotic motion of such
particles is little correlated, and value of coefficient of rela-
tive turbulent diffusion of particles is nonzero, that leads to
decreasing the particles flux in comparison with coagula-
tion without turbulence (Fig. 3). This effect may be
explained as follows. Probability of collision of bth particle
with target ath particle is reduced at increasing heir relative
chaotic motion.
ig. 4. Particle response function (10) with various parameters of velocity
ips as a function of particles inertia. Lines are model predictions, points
re DNS data [19] for ca = 0.
5. Calculation results

We compare our theoretical results with DNS data
[2,3,19]. DNS calculation was realized for various Rey-
nolds turbulent numbers. For Rek � 25 universal region
in turbulent spectra is diminishing in comparison with lar-
ger Reynolds numbers (see Appendix A). Considering this
fact we expect satisfactory agreement our results with DNS
data obtained for larger Reynolds number. On the Fig. 4 is
shown dependence of response function (10) on parameter
of particles inertia. From Fig. 4 one can conclude that
increasing dimensionless parameter of particles velocity
slip ca = hWai/u decrease intensity of turbulent particles
motion.

Correlation coefficient between turbulent velocities of
two identical particles is decreasing with increasing parti-
cles inertia (Fig. 5). In Fig. 5 also shown the DNS data
for small Reynolds number of turbulence Rek � 25. One
can see that values of these DNS data essentially differ
from data obtained for larger Rek . Our theoretical data
coordinated reasonably with DNS data for Rek P 45.

Averaged module of relative velocity between particles is
composition of two effects. First, increasing the particles
inertia monotonically reduced correlation between its cha-
otic motion, and intensity of turbulent relative velocity
increases (Fig. 6). For particles with dynamic relaxation
times of order integral time scale of turbulence sa / TE

the averaged module of relative velocity reaches a maxi-
mum value. Second, the further grows of particle inertia
suppresses chaotic motion of particles, and turbulent rela-
tive velocity between particles reduced. It is necessary to
note, that for inertia less particles DNS data [2] includes
turbulent velocity difference at the Kolmogorov micro scale
�gK, so for Xa = 0 DNS data distinct from zero.

For particles with different values of inertia parameters
the behavior of turbulent relative velocity between particles
is more complex (see Fig. 7). Fig. 7 present dependence of
average module of turbulent relative velocity on inertial
parameter of ath particles provided that inertial parameter
of bth particle is fixed. One can see nonmonotonic depen-
dence of relative velocity on ath particles inertia. Turbulent
F
sl
a



Fig. 5. Correlation coefficient of identical particles as a function of their
inertia parameters. Line is model predictions, points are DNS data [2].

Fig. 6. Dependence of average module of turbulent relative velocity for
identical particles on particles inertia. Line is model predictions, points are
DNS data [2].

Fig. 7. Module of turbulent relative velocity between two particles as a functio
on the figure. Points are DNS data [3]. Lines are model predictions: (a) 1 – X
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motion of particles with close inertial parameters sa � sb

correlates more than particles with different inertial param-
eters. This fact connected with minimum value of the rela-
tive velocity in Fig. 7(a) and (b). For bth particle with
sb / TE relative velocity reaches a maximum value if inertia
parameters of ath particles are essentially below the inertial
parameter of bth particle (Fig. 7(a)). Further growth of ath
particles inertia parameters Xa� 1 leads to constant inten-
sity of chaotic relative motion between particles (Fig. 7(a)
and (b)). For region Xa� Xb module of turbulent relative
velocity is determined by intensity of turbulent motion of
particles with smaller parameter of inertia. When parame-
ter of inertia bth particles is smaller than integral time scale
Xb� 1 the minimum value of relative velocity module is
shift to the region with minor values Xa� 1 (Fig. 7(b)).
The minimum value of relative velocity is sufficiently less
than in the case when Xb / 1. For great parameters of iner-
tia ath particles Xa� 1 the intensity of relative motion
aspires to constant value. These tendencies prove to be true
for particles with small inertia in Fig. 8.

Reasonable agreement our theoretical results with DNS
data [2,3,19] testify to validity of the developed model for
calculation the coagulation process of polydisperse drop-
lets in various turbulent flows. We analyzed two different
cases of turbulent flows: turbulence in a cloud and turbu-
lence in a pipe in the assumption of isotropy. In the last
case we also investigated two situations: turbulent motion
of droplets in gravitational field and turbulent motion of
droplets without gravitation.

First, we present the results for turbulence in clouds with
following parameters (see, for example [20]): turbulent dis-
sipation rate is e = 500 cm2/s3 and Reynolds number of
turbulence is Rek = 4000. Other parameters of turbulence
are calculated with the help of Appendix A. Mean velocity
of turbulence is u = 0.95 m/s, Kolmogorov time micro
scale sK = 17.3 ms, integral time scale of turbulence is
TE = 8.7 s.

Coefficient of aerodynamic resistance of spherical drop-
lets is calculated with nonlinear effects. Fig. 9 illustrated the
n of inertia ath particle (a). (b) Inertial parameter of bth particle is shown

b = 1, 2 – 2; (b) 1 – Xb = 0.1, 2 – 0.2.



Fig. 8. Module of turbulent relative velocity between two particles as a
function of inertia ath particle. Inertial parameter of bth particle is shown
on the figure. Lines are model predictions, points are DNS data [3].
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main dynamical characteristics of droplets in the case of
cloud turbulence. Result of calculations with Stokes
approach and linear resistance are essentially different not
Fig. 9. Characteristics of droplets in cloud turbulence. Average relative veloci
inertia (c). Droplets response function (d). Lines are calculation results: (1) St
only for average relative velocity (Fig. 9(a)), particles relax-
ation times (Fig. 9(b)), but also for parameter of droplet
inertia (Fig. 9(c)) and response function (Fig. 9(d)). In most
investigated diapason of droplets diameters sedimentation
velocity is surpass the mean turbulent velocity (Fig. 9(a)),
so one can expect noticeable influence of crossing trajec-
tory effect on turbulent characteristics of droplets. Droplets
relaxation time is less than integral time scale of turbulence
(Fig. 9(b)), so parameter of droplets inertia is smaller than
unity (Fig. 9(c)). Droplets response function is essentially
higher than zero (Fig. 9(d)), and intensity of droplets tur-
bulence is high enough. So, rather large values of sedimen-
tation velocities of droplets will reduce their coefficients of
turbulent diffusion.

In Fig. 10 are present relative turbulent parameters of
droplets at a cloud conditions. Average module of relative
turbulent velocity and coefficient of relative diffusion of
droplets rapidly varies in the diapason when diameters of
droplets are close to each other (Fig. 10(a) and (b)). For
larger difference between droplets diameters relative turbu-
lent velocity and coefficient of relative diffusion vary insig-
nificantly. One can notice that for droplets with equal
diameters coefficient of turbulent diffusion is suppressed
as a result of crossing trajectory effect. Values of turbulent
ty due to gravity (a). Droplets relaxation times (b). Parameter of droplets
okes drag; (2) nonlinear drag.



Fig. 10. Parameters of relative turbulent motion of droplets in cloud turbulence. Averaged module of turbulent relative velocity (a). Coefficient of relative
turbulent diffusion (b). Kernel of coagulation (c).
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relative velocity and turbulent diffusion for droplets with
sufficiently distinct diameters are comparable with values
of corresponding characteristics of carrier phase turbu-
lence. Contribution of turbulent effects and gravitational
sedimentation of droplets in coagulation kernel are shown
in Fig. 10(c). Rapid change of coagulation coefficient in the
diapason when diameters of droplets are close to each
other is connected with analogous behavior of relative tur-
bulent velocity.

For comparison in Fig. 11 is shown coagulation kernel
due to droplets sedimentation velocity without turbulence.
It is principal differences between two pictures. On the one
hand, droplets with equal diameters will coagulate only in
turbulent flow. However on the other hand, from Figs.
10(c) and 11 one can notice, that for droplets with appre-
ciable difference in their diameters turbulence reduces coag-
ulation kernel in comparison with pure gravitational
coagulation.
For cloud turbulence Fig. 12 illustrates behavior of
averaged module of relative velocity between droplets
when diameter of bth droplet is set. For droplets
0.01 mm 6 da 6 3 mm average module of relative velocity
between droplets of equivalent diameters growth with
increasing droplets sizes (curve 1). In the narrow diapason
of droplets sizes the module of turbulent relative velocity
grows rapidly with increasing the difference between drop-
lets diameters. For larger difference in droplets sizes the
value of module of relative velocity is determined by inten-
sity of turbulent motion of smaller droplet (Fig. 12).

Contribution of relative turbulent motion of droplets
has important contribution in coagulation kernel
(Fig. 13). Coagulation of droplets with identical diameters
is possible only due to turbulence (curve 1). Coagulation
rate of droplets with various small diameters also deter-
mines by chaotic relative motion. There is a range of drop-
lets diameters, when turbulence sufficiently increases



Fig. 11. Gravitational coagulation kernel without turbulence.

Fig. 12. Average module of relative turbulent velocity as a function of
diameter of ath droplets when diameter of bth droplet is fixed. Lines are
model predictions: (1) droplets with identical diameters; (2) db = 0.46 mm;
(3) 1.5 mm; (4) 2 mm.

Fig. 13. Coagulation kernel as a function of droplets diameters of ath
particles when diameter of b droplet is fixed. Lines model predictions.
Solid lines for turbulent coagulations, dashed lines for only gravitational
coagulations: (1) droplets with equivalent diameters: (2) db = 0.5 mm; (3)
1 mm: (4) 2 mm.
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coagulation rate (see lines 4 in Fig. 13). But there is other
diapason of droplets diameters when total coagulation ker-
nel is smaller then in the case of pure gravitational coagu-
lation (see lines 2 and 3 in Fig. 13).

Second case, which we consider, illustrates droplets
behavior for conditions similar to the turbulence in pipes
flow. We carried out our investigation in the assumptions
of stabilized conditions and isotropic turbulence. We set
turbulent dissipation rate e = 5 � 104 cm2/s3, Reynolds
number of turbulence Rek = 100. Estimation of other tur-
bulence parameters give: mean velocity of turbulence is
u = 0.47 m/s, Kolmogorov time micro scale sK = 1.7 ms,
integral time scale of turbulence is TE = 22 ms. In that case
diapason of diameters of droplets involving in turbulent
motion is sufficiently narrow than in previous study. Two
factors suppressed turbulent motion of droplets. First, in
most part of the range of diameters sedimentation velocity
of droplets is larger that mean turbulent velocity
(Fig. 14(a)). And second, in the most part of droplets diam-
eters value of relaxation time is larger then integral time
scale of turbulence (Fig. 14(b)). Hence crossing trajectory
effect and high values of parameter of droplets inertia
(Fig. 14(c)) sufficiently reduced response function of large
droplets (Fig. 14(d)).

Fig. 15 illustrates relative turbulent parameters for pipe
flow conditions. On the picture of average module of rela-
tive velocity (Fig. 15(a)) there is a maximum in the region
of closed values of droplets diameters. Growth of differ-
ence between droplets sizes leads, first, to reduction of
correlation coefficient between droplets chaotic motion
(Fig. 15(b)) and, second, to increasing turbulent relative
velocity between droplets (Fig. 15(a)). It is necessary to
pay attention that in gravitational field correlation coeffi-
cient is not reduced with increasing diameters of droplets
with equal size. This feature in behavior of correlation
coefficient is traced only in mass force fields (compare
Fig. 15(a) and Fig. 5). Coefficient of relative turbulent dif-
fusion of droplets also has a maximum value (Fig. 15(c)).
As against a case of cloud turbulence average relative
velocity and coefficient of turbulent relative diffusion
change with droplets diameters variation more smooth.
Also in distinct of cloud turbulence the coagulation kernel
depends on droplets diameters without sharp corners (com-
pare Fig. 10(c) and 15 (d)).

On the Fig. 16 are shown results of parametric study of
average module of turbulent relative velocity between
droplets. One can notice, that a maximum value in the rel-
ative velocity of identical droplets (curve 1) is localized at
the diameter which is corresponds to the value of parame-
ter of droplets inertia Xa � 1 (compare Figs. 12 and 16).
Increasing difference between droplets diameters leads to
a constant value of turbulent relative velocity. Existence
of the maximum value in dependence of coefficient of rela-
tive turbulent diffusion for identical droplets is confirmed



Fig. 14. Characteristics of droplets in a pipe flow turbulence. Sedimentation velocities of droplets (a). Droplets relaxation times (b). Parameters of droplets
inertia (c). Response functions of droplets (d). Lines are calculation results: (1) Stokes drag; (2) nonlinear drag.
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by the Fig. 17. Initial grows of relative diffusion is con-
nected with destruction of correlation between turbulent
motion of droplets with increasing in their sizes (see
Fig. 15 (b) and (17)). The subsequent decreasing of diffu-
sion coefficient is explained by crossing trajectory effect.

At the analysis of coagulation kernel (Fig. 18) we can
distinct two regions in droplets diameters. In the first
region total turbulent coagulation kernel is larger then
gravitational kernel without turbulence. In that region
value of turbulent relative velocity between droplets sur-
pass difference in their sedimentation velocities. In second
region is observed reduction of total turbulent coagulation
kernel in comparison of pure gravitational coagulation.
This effect is connected with relative turbulent diffusion
between droplets.

Fig. 19 illustrates the characteristic features of droplets
relative motion in the turbulent flow without gravitational
forces. Parameters of turbulence are analogous to the case
of pipe flow. Without gravitation parameter of particles
inertia coincides with the parameter calculated in Stokes
approximation (see Fig. 14(c)). In opposition to the previ-
ous case correlation coefficient aspires to zero value for
large droplets (compare Fig. 15(b) and 19(a)). Zero value
of gravitation forces and therefore absence of crossing
trajectories effect lead to the constant value of coefficient
of relative turbulent diffusion for larger droplets
(Fig. 19(b)). Coagulation coefficient smoothly varies with
increasing droplets diameter (Fig. 19(c)).

Fig. 20 presents calculation results for gravitational
coagulation kernel without turbulence. Comparison of
Fig. 13 with 18 and Figs. 10(c), 15(d), 19(c) with Figs. 11,
20 allows to draw following conclusions about the respon-
sibility of the two distinct mechanisms in droplets
coagulation.

1. Coagulation of droplets with equal diameters is possible
only due to its turbulent motion. Involving of droplets
into turbulent motion of energy containing eddies is ori-
gin of chaotic relative velocity between droplets. Turbu-
lent coagulation of droplets may proceed at the absence
of mass forces.

2. Turbulent relative diffusion between droplets may
reduce the value of coagulation kernel for droplets with
sufficient difference in their sizes. Simple hypothesis



Fig. 15. Parameters of relative turbulent motion of droplets. Average module of turbulent relative velocity (a). Correlation coefficient (b). Coefficient of
turbulent relative diffusion (c). Coagulation kernel (d).
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about additivity of two mechanisms of droplets coagula-
tion is incorrect.

3. Qualitative and quantitative features of turbulent rela-
tive motion of droplets and values of coagulation kernel
is strongly depends on types of turbulent flows. For
example, essentially different results are obtained for
parameters characteristics to cloud turbulence and tur-
bulence in a pipe flow.

6. Conclusions

Euler description is used for investigation particles
chaotic motion in turbulence. Spectral presentation of a car-
rier phase velocity fluctuations is used for calculation turbu-
lent characteristics of particles. On the base of PDF
approach the boundary condition takes into account
momentum loss and probability of particles association is
obtained. Expression for turbulent coagulation kernel of
particles in gravity field is found out. It is proved that relative
turbulent diffusion of particles may decrease coagulation
coefficient in comparison of pure gravitational coagulation.

Two distinct conditions of turbulence are considered.
Turbulence in a cloud and turbulence in pipe flow at stabi-
lized condition in isotropic assumption are studied. It is
found that qualitative and quantitative features of relative
motion of particles strongly depend on type of turbulence.

Results of present work are valid for particles with
dynamic relaxation times larger than Kolmogorov time
micro scale. Effects connected with preferential concentra-
tion of particles are realized for particles with smaller
relaxation times and will be considered in next publication.



Fig. 16. Average module of relative turbulent velocity as a function of
diameter of ath droplets when diameter of bth droplet is fixed. Lines are
model predictions: (1) droplets with identical diameters; (2) db = 0.06 mm;
(3) 0.1 mm; (4) 0.3 mm.

Fig. 17. Coefficient of relative turbulent diffusion between droplets with
equal diameters.

Fig. 18. Coagulation kernel as a function of droplets diameters of ath
particles when diameter of b droplet is fixed. Lines model predictions.
Solid lines for turbulent coagulations, dashed lines for only gravitational
coagulations without turbulence: (1) droplets with equivalent diameters:
(2) db = 0.1 mm; (3) 0.2 mm: (4) 0.3 mm.
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Appendix A. Turbulence spectrum for energy containing

eddies

For statistically stationary and homogeneous turbulence
the spectral form of two-point and two-time correlation
function of gas velocity fluctuations in Euler description
is defined as follows

huiðxþ y; t þ sÞujðx; tÞi ¼ Eijðy; sÞ ¼
Z

eik�yÊijðk; sÞ; ðA:1Þ

Êijðk; sÞ ¼
1

ð2pÞ3
Z

e�ik�yEijðy; sÞ;

where bEijðk; sÞ is spectral presentation of velocity correla-
tion function; k is a wave vector.

For isotropic turbulent flow function bEijðk; sÞ in (A.1)
have a general form [14]

bEijðk; sÞ ¼ bEijðk; sÞ ¼
bEðk; sÞ
4pk2

dij �
kikj

k2

� 

; ðA:2Þ

where dij is Kronecker delta; k2 = kiki is square of module
of a wave vector.

Function bEðk; sÞ in (A.2) describes distribution of turbu-
lent energy along the eddies with characteristic space scale
�k�1. In spectral presentation one point velocity correla-
tion and turbulent energy of carrier phase are

huiðx; t þ sÞujðx; tÞi ¼
Z bEijðk; sÞdk ¼

Z 1

0

bEijðk; sÞdk;

E ¼
Z 1

0

bEðk; 0Þdk: ðA:3Þ

We consider particles dynamic relaxation times of which
are comparable with integral time scale of turbulent ener-
getic eddies. For modeling spectra of energy containing
region we used von Carman approximation (see, for exam-
ple [14])bEEðk; sÞ ¼ bE0

EðkÞ expð�xksÞ;

bE0
EðkÞ ¼ E

gE

kE

x4

ð1þ x2Þ17=6
; ðA:4Þ

where bE0
EðkÞ is Carman’s approximation of three-dimen-

sional spectra of turbulence; kE is wave vector of energy
containing eddies; xk is frequency of eddies; x = k/kE is
dimensionless wave number; E is turbulent energy.

In the region of energy containing eddies (0 < x 6 1)bE0
E / k4. The universal region of turbulent spectra (x�

1) is describes with the well-known Kolmogorov distri-
bution

bE0
EðkÞ ¼ CKe2=3k�5=3; ðA:5Þ

where CK is Kolmogorov constant; e is turbulent dissipa-
tion rate.

From (A.4) and (A.5) at x� 1 follows the expression
for scale of wave vectors for energy containing eddies



Fig. 19. Parameters of relative turbulent motion of droplets without gravitation. Coefficient of correlation (a). Coefficient of relative turbulent diffusion of
droplets (b). Coagulation kernel (c).
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kE ¼
CK

gE

� 
2=3 e

E3=2
: ðA:6Þ

The normalization constant gE in (A.4) is calculated from
the conditions (A.3)

E ¼
Z 1

0

bE0
EðkÞdk; gE ¼

2

Bð5=2; 1=3Þ � 0:969:

Here B(x,y) is beta function

Bðx; yÞ ¼
Z 1

0

hx�1

ð1þ hÞxþy dh:

The frequency of energy containing eddies is estimated un-
der hypothesis about cascade transfer of turbulent energy
along the spectra

xk ¼ e1=3k2=3
E x2=3: ðA:7Þ
Integral time scale of turbulence is calculate along the
approximation (A.4)

T E ¼
1

E

Z 1

0

dk
Z 1

0

bEEðk; sÞds ¼ 1

E

Z 1

0

bE0
EðkÞ
xk

dk

¼ bE

E
e
: ðA:8Þ

After calculation the last integral we obtain

bE ¼
gE

2
B

13

6
;
2

3

� 

gE

CK

� 
4=9

:

For estimation the ratio between integral time scale and
Kolmogorov time micro scale sK = (m/e)1/2 we used expres-
sion for Reynolds number of turbulence calculated on the
base of Taylor micro scale k (see, for example, [14])



Fig. 21. United turbulent spectra: (1) Carman approximation for energy
containing eddies; (2) Pao approximation.

Fig. 22. United turbulent spectra with various Reynolds number of
turbulence.

Fig. 20. Gravitational coagulation kernel without turbulence. Droplets
diameters for pipe flow.
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Rek ¼
uk
m
; Rek ¼

20

3

� 
1=2 E

ðmeÞ1=2
: ðA:9Þ

As a result of (A.8) and (A.9) we find

T E

sK

¼ bE

3

20

� 
1=2

Rek:

As an example, for Kolmogorov constant CK = 1.67 [14],
we have bE � 0.323, and TE/sK � 0.125Rek.

The expressions (A.1), (A.2) and (A.4) enable us to cal-
culate particles response functions for correlations of any
gas velocity components. Response function for particles
turbulent energy (3) follows after summation (A.2) at
i = j. For calculation the response function (10) in wave
space in spherical coordinates system we carry out the fol-
lowing transformations

fa¼
1

E

Z 1

0

bE0ðkÞe�
k2D2

a
2 dk

1

sa

Z 1

0

e�
s
sa
�xk s ds

1

2

Z p

0

sinheik W ah iscosh dh

¼ 1

E

Z 1

0

bE0ðkÞe�
k2D2

a
2 dk

1

sa

Z 1

0

sinðkhW aisÞ
khW ais

e�
s
sa
�xk s ds

¼ 1

E

Z 1

0

bE0ðkÞe�
k2D2

a
2

arctg ksa W ah i
1þxksa

� �
ksahW ai

dk ðA:10Þ

From expression (A.10) one can see that grows of relative
velocity of particles hWai reduced the response function.
Without velocity slip (hWai = 0) from (A10) it is follows

fa ¼
1

E

Z 1

0

bE0ðkÞ
1þ xksa

e�
k2D2

a
2 dk:

From last expression one can see that particle inertia also
diminishes energy of chaotic motion of dispersed phase.

For discussion the results of comparison DNS data
[2,3,19] with theoretical results of our work it is useful
obtain spectral presentation in wider region of wave vec-
tors. Distribution of turbulent energy in the area of viscous
dissipation is approximated as Pao spectrum [21]bE0

DðkÞ ¼ CKe2=3k�5=3 exp½�aðkgKÞ
4=2�; ðA:11Þ

where gK = (m3/e)1/4 is Kolmogorov space micro scale.
Constant a in (A.11) is found from normalization

condition

e ¼ 2m
Z 1

0

k2bE0
DðkÞdk; a ¼ 3

2
CK:

United turbulent spectra in the all region of turbulent
eddies is approximated as followsbE0ðkÞ ¼ minðE0

EðkÞ;E0
DðkÞÞ:

Fig. 21 illustrates the composition of the branches of turbu-
lent spectra for regions of energy containing eddies and vis-
cous dissipation. Fig. 22 shows dependence of a shape of
the spectra on Reynolds number of turbulence Rek. One



Fig. 23. Ratio integral time scale to Kolmogorov micro scale as a function
of turbulence Reynolds number. Line model prediction, points are DNS
data [2].
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can see that the region of universal energy transfer between
turbulent eddies (A.5) is reduced with decreasing Reynolds
number of turbulence. Dependence of ratio integral time
macro scale at Kolmogorov time micro scale TE/sK is pre-
sented in Fig. 23. In Fig. 23 time macro scale is defined for
one-dimensional spectra Te = 2TE [14].

Appendix B. Averaged value of a random vector module

We present calculation result for averaged module of
vector w distributed as Gaussian random field. For isotro-
pic case PDF of the random vector is

UðwÞ ¼ 1

ð2prÞ3=2
exp �w � w

2r

� �
¼
Y3

i¼1

1

ð2prÞ1=2
exp �w2

i

2r

� 

; ðB:1Þ

where r ¼ w2
i

� �
is average value of square of velocity fluc-

tuations in one direction.
PDF of the random vector module jwj ¼

ffiffiffiffiffiffiffiffiffiffi
w � w
p

is
obtained after integration over velocity space in spherical
coordinates

U0ðjwjÞ ¼
Z 2p

0

du
Z p

0

jwjUðwÞ sin hdh

¼
ffiffiffi
2

p

r
jwj2

r3=2
e�
jwj2
2r : ðB:2Þ

Expression (B.2) is well-known Raleigh distribution with
normalization conditionZ 1

0

U0ðwÞdw ¼ 1:

Averaged value of the random vector w module is calcu-
lated as
hjwji ¼
Z 1

0

wU0ðwÞdw ¼ Nr1=2; N ¼ 2

ffiffiffi
2

p

r
: ðB:3Þ

We compare result (B.3) with averaged value of one com-
ponent of the w in positive direction

hwþi ¼
Z 1

0

wffiffiffiffiffiffiffiffi
2pr
p e�

w2

2r dw ¼
ffiffiffi
2

p

r
r1=2: ðB:4Þ

From expressions (B.3) and (B.4) follows

hjwji=hwþi ¼ 2:

At the calculation particles response functions arises the
transformation of PDF of particle transition

Gðk; nÞ ¼
Z

1

ð2pD2Þ3=2
exp � jWn� Yj2

2D2

 !
expðik � YÞdY:

ðB:5Þ
In new variable y = Y �Wn the expression (B.5) has the
form

Gðk;nÞ¼ expðik �WnÞ
Z

1

ð2pD2Þ3=2
exp �y �y

2D2
þ ik �y

� 

dy:

In spherical coordinates the above integral will be as

Gðk; nÞ ¼ expðik �WnÞ
Z 2p

0

du
Z p

0

sin hdh
Z 1

0

y2

2pD2
� �3=2

� exp � y2

2D2
þ iky cos h

� 

dy:

After evident calculations we obtain simple expression for
PDF of particle transition in the wave space

Gðk; nÞ ¼
ffiffiffi
2

p

r
expðik �WnÞ

kD3

Z 1

0

y sinðkyÞ exp � y2

2D2

� 

dy

¼ exp ik �Wn� k2D2

2

� 

: ðB:6Þ
Appendix C. Solution of equation for particles distribution

Form Eq. (44) follows formula for gradient of
distribution

dhN abi
dr	

¼ B
expð�Habr	Þ

r	2
; Hab ¼

aabhW abi=4

Dab
; ðC:1Þ

where r* = r/aab is dimensionless coordinate; B is integra-
tion constant which value will be defined during solution.

Eq. (C.1) leads to following form of hNabi

hN abi ¼ Aþ B
Z r	

1

e�Habt

t2
dt; ðC:2Þ

where A is integration constant.
Value of hNabi at r* = 1 is hN abi ¼ hN ð1Þab i. Expression for

distribution of particles is finding with the help of (C.2) and
boundary condition (45)
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hN abi ¼ N ð1Þab

D E
þ

N 0
ab

D E
� N ð1Þab

D E
E2 Hab

� � Z r	

1

e�Habt

t2
dt;

E2ðxÞ ¼
Z 1

1

e�xt

t2
dt; ðC:3Þ

where E2(x) is integral exponent of second order [18].
Boundary conditions (46) at r* = 1 serves for calculation

the boundary value of N ð1Þab

D E
and flux of bth particles.

Involving (C.1) and (C.3) we write down the following
equation

1

2
hW abi N ð1Þab

D E
þ Dab

N 0
ab

D E
� N ð1Þab

D E
aabHabE2ðHabÞ

¼ 1� v
1þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
w2

ab

D Er
N ð1Þab

D E
¼ J abhN 0

abi: ðC:4Þ

Solution of Eq. (C.4) gives particles distribution at the
colliding surface

N ð1Þab

D E
¼ N 0

ab

D E
1þHabeHabE2 Hab

� � 1�v
1þv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p w2

ab

D Er
hW abi=2

�1

0BB@
1CCA

2664
3775
�1

:

Expression (47) follows from above formula and (C.4).
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